

Vigil Mission Objectives

Juha-Pekka Luntama Head of Space Weather Office 13 July 2023

|

ESA UNCLASSIFIED - For ESA Official Use Only

→ THE EUROPEAN SPACE AGENCY

ESA's Enhanced Space Weather Monitoring System

→ THE EUROPEAN SPACE AGENCY

Space Weather Monitoring Enhancement with Vigil

→ THE EUROPEAN SPACE AGENCY

147

· eesa

Vigil Mission Objectives

	Objective	Observations	
A	 Improved assessment of CME motion and density, in the corona and heliosphere, in combination with L1 observations Observations necessary to improve solar activity onset detection and forecasting 	Coronagraphy Heliospheric imaging Magnetography	Nowcasting
В	 Measure vector components of the IMF Determine the characteristics of solar wind features rotating towards Earth 	Plasma spectrometry Magnetometry	Forecasting
С	 Enable assessment of developing solar activity, through the monitoring of active region development up to 4 or 5 days beyond the East limb 	Magnetography	Forecasting
Vigil Mission Advisory Group: strong recommendation for Vigil to carry an EUV imager for bonus science and support for the mission objectives.			

Vigil Priority 1 Data in ESA Space Weather System

THE EUROPEAN SPACE AGENCY

VIGIL Payload Suite Overview

C. Bramanti

VIGIL Payload Manager

→ THE EUROPEAN SPACE AGENCY

÷

VIGIL PAYLOAD SUITE OVERVIEW I

	Instrument	Observation	Utilisation	
Remote Sensing Instruments	Compact Coronagraph (CCOR)	Solar coronagraphy	Evolution and propagation of CMEs- Overlapping observation close to the SUN from 4 deg between CCOR and HI	
	Heliospheric Imager (HI)	Heliospheric imagery		
	Photospheric Magnetic field Imager (PMI)	Vector magnetic field mapping of the solar photosphere	Evolving magnetic filed around the sun: input into solar wind modelling and activity forecast	
In-situ instruments	Plasma Analyser (PLA)	Solar wind particle densities, temperatures and velocity	Solar wind monitoring, detection and characterisation of high-speed solar wind	
	Magnetometer (MAG)	Interplanetary Magnetic Field vector-magnetic field	streams	

A NASA Announcement of Opportunity (NIO), an EUV imager, will become the 6th instrument on VIGIL mission

💳 💶 📕 🛨 💳 🔚 📕 🗮 💳 📕 📲 🚝 📲 🗮 🔤 வ 🚳 🛌 📲 👫 🕂 🖬 💳 🐷 🚾 👘 🔸 The European Space Agency

CCOR- Compact Coronograph

Coronal White Light Imaging	Observational Requirement	Endcap Module Telescope Module Imaging Module
Field of View (FOV)	3 – 22 R _{Sun}	
Dynamic Range	16 bit depth images 2 x 10 ⁻⁹ to 4 x 10 ⁻¹¹ B ₀ B ₀ : Solar brightness	
Accuracy	Detection of CMEs corresponding to $\sim 2 \times 10^{-13}$ of solar brightness with SNR > 4 dB at 22 solar radii.	CIM PSB
Angular resolution	2 arcmin	Heritage from CCOR SWFO-1 and CCOR GOES-U
Cadence	15 min	
Latency	30 min	

The Compact Coronagraph (CCOR) is the key instrument for detection of the onsets of the Coronal Mass Ejections (CMEs).

Onset of a CME can be seen in the coronagraph image as transient increase in the light scattering from the plasma cloud of the CME. Coronagraph is the most definitive method to detect CME onsets and provide the associated warnings.

Heliospheric Imager (HI)

Heliosperic Imager	Observational Requirement
Field of View (FOV)	4-50 Deg
Dynamic Range	Brightness range from 1 x 10 ⁻¹⁰ to 1 x 10 ⁻¹³ \cdot B ₀ B ₀ : Solar brightness
Accuracy	Photometric absolute accuracy better than 5% of the measured signal
Spatial resolution	4 arcmin (inner heliosphere)
Sensitivity	Sufficient to measure CME intensities that are 100 times weaker than a CME corresponding to 3 x 10^{-15} \cdot B ₀ .
Cadence	60 min
Latency	120 min

Heritage from STEREO HI

The Heliospheric Imager will provide wide-angle, white-light images of the region of space between the Sun and the Earth (i.e., the heliosphere). These images will enable tracking of Earth-directed CMEs over their propagation path once they have left the field-of-view of the coronagraph instrument.

Magnetometer (MAG)

Magnetomer	Observational Requirement
Phisical Range	Vector with 3 components
Dynamic Range	0.1 – 200 nT for every component, along positive and negative axis
Accuracy	Absolute:
Accuracy	±1nT
Cadence	1 min
Latency	60 min

- The MAG shall measure the 3 components of the Interplanetary Magnetic Field (IMF) vector (0.1 - 200nT, +/-1nT)
- MAG is an extensive re-use of JUICE J-MAG (Dual-sensors Fluxgate magnetometer)

Two identical sensors MAGOBS and MAGIBS

MAGELB

=

Photospheric Magnetic Field Imager (PMI) - MPS

Photospheric Magnetic Field Imager	Observational Requirement
Magnetic field direction	Derive magnetic field direction
Spatial Range	Full disk plus margin to allow for absolute pointing error
Accuracy	10G
Spatial resolution	2.5 arcsec
Dynamic Range	±4 kG
Cadence	60 min
Latency	120 min

- PMI is an heritage instrument from SOLO and will provide:
- the complete photospheric vector magnetic field information (field strength, azimuth, inclination)
- crucial physical parameters (e.g. distribution of vertical horizontal magnetic fields, distribution of inclination angles, twist, writhe, helicity, current density, share angles, photospheric magnetic excess energy etc.)

· 💳 💶 📕 🚍 🚍 📕 🗮 💳 📕 📕 🚍 📲 📲 🗮 🔤 ன 👰 🖕 📕 🗮 🛨 🖬 🔤 🔤 🚱 → THE EUROPEAN SPACE AGENCY

Plasma Analyser (PLA) – MSSL

Plasma Analyser	Observational Requirement	M03
Field of View (FOV)	±22.5° (azimuthal FoV, in ecliptic plane) x 45° (elevation direction) with the centre of the FoV pointing towards the sun with an offset of 10 degrees	M01
Angular resolution	5 degrees x 5 degrees	
Dynamic Range	Velocity: 200 - 2500 km s ⁻¹ Density: 0.2-150 cm ⁻³ Temperature: 40,000 - 1,000,000 K	E06 E05 E04 E03 E04
Accuracy	5% for bulk density 20% for temperature	
Cadence	1 min	Heritage from EAS SOLO
Latency	60 min	

The Plasma Analyser (PLA) shall provide measurements which allow to derive the solar wind, by measuring the characteristics of the ions with selected energy :

- bulk Velocity in a range of 200 2500 Km/sec
- plasma bulk Density in a range of 0.2 150 cm⁻³
- bulk Temperature in a dynamic range of 40,000 1,000,000 K can be derived.

→ THE EUROPEAN SPACE AGENCY

A NDA is needed by AIRBUS UK (VIGIL Spacecraft Prime) in order to be able to share the VIGIL Airbus Applicable and Reference documents with the NIO potential bidders.

NASA will distribute the NDA to the potential bidders to be filled.

Airbus Defence and Space, a company duly organised and existing under the laws of ______, with a share capital of ______, registered in ______, under number ______, having its registered office located at _______, acting through its Business Line Insent one BL as appropriate, Represented by [Name], acting in his/her capacity as [Title], Hereinafter referred to as "Airbus Defence and Space", and ______, a company duly organised and existing under the laws of ______, with a share capital of ______, registered in _____, under number ______, having its registered office located at Represented by [Name], acting in his/her capacity as [Title], Hereinafter referred to as the "XXX",

and

📥 💳 📕 🚼 💳 🔚 📕 🗮 🔤 📕 📕 🚍 👬 💳 🗛 🖓 🔽 🚺 🗮 💳 🗛 ன 🔤

THANK YOU

www.esa.int swe.ssa.esa.int @esaspaceweather

European Space Agency